Parallel Algorithms for Integer Factorisation
نویسنده
چکیده
The problem of finding the prime factors of large composite numbers has always been of mathematical interest. With the advent of public key cryptosystems it is also of practical importance, because the security of some of these cryptosystems, such as the Rivest-Shamir-Adelman (RSA) system, depends on the difficulty of factoring the public keys. In recent years the best known integer factorisation algorithms have improved greatly, to the point where it is now easy to factor a 60-decimal digit number, and possible to factor numbers larger than 120 decimal digits, given the availability of enough computing power. We describe several algorithms, including the elliptic curve method (ECM), and the multiple-polynomial quadratic sieve (MPQS) algorithm, and discuss their parallel implementation. It turns out that some of the algorithms are very well suited to parallel implementation. Doubling the degree of parallelism (i.e. the amount of hardware devoted to the problem) roughly increases the size of a number which can be factored in a fixed time by 3 decimal digits. Some recent computational results are mentioned – for example, the complete factorisation of the 617-decimal digit Fermat number F11 = 2 11 + 1 which was accomplished using ECM.
منابع مشابه
Some Parallel Algorithms for Integer Factorisation
Algorithms for finding the prime factors of large composite numbers are of practical importance because of the widespread use of public key cryptosystems whose security depends on the presumed difficulty of the factorisation problem. In recent years the limits of the best integer factorisation algorithms have been extended greatly, due in part to Moore’s law and in part to algorithmic improveme...
متن کاملVector and Parallel Algorithms for Integer Factorisation
The problem of finding the prime factors of large composite numbers is of practical importance since the advent of public key cryptosystems whose security depends on the presumed difficulty of this problem. In recent years the best known integer factorisation algorithms have improved greatly. It is now routine to factor 60-decimal digit numbers, and possible to factor numbers of more than 110 d...
متن کاملInteger Factorisation on the AP1000∗
We compare implementations of two integer factorisation algorithms, the elliptic curve method (ECM) and a variant of the Pollard “rho” method, on three machines (the Fujitsu AP1000, VP2200 and VPP500) with parallel and/or vector architectures. ECM is scalable and well suited for both vector and parallel architectures.
متن کاملRecent Progress and Prospects for Integer Factorisation Algorithms
The integer factorisation and discrete logarithm problems are of practical importance because of the widespread use of public key cryptosystems whose security depends on the presumed difficulty of solving these problems. This paper considers primarily the integer factorisation problem. In recent years the limits of the best integer factorisation algorithms have been extended greatly, due in par...
متن کاملFactorisation of Large Integers on some Vector and Parallel Computers
A list of technical reports, including some abstracts and copies of some full reports may be found at: Abstract We compare implementations of two integer factorization algorithms, the elliptic curve method (ECM) and a variant of the Pollard \rho" method, on three machines with parallel and/or vector architectures. ECM is scalable and well suited for both vector and parallel architectures. The \...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003